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Abstract

For a discrete mechanical system on a Lie graupetermined by a (reduced) Lagrangign
we define a Poisson structure via the pull-back of the Lie—Poisson structure on the dual of the Lie
algebrag* by the corresponding Legendre transform. The main result shown in this paper is that
this structure coincides with the reduction under the symmetry gébopthe canonical discrete
Lagrange 2-fornar, onG x G. Its symplectic leaves then become dynamically invariant manifolds
for the reduced discrete system. Links between our approach and that of groupoids and algebroids as
well as the reduced Hamilton—Jacobi equation are made. The rigid body is discussed as an example.
© 2000 Published by Elsevier Science B.V.
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1. Introduction

Background.This paper continues our development of discrete Lagrangian mechanics
on a Lie group introduced in Ref. [7]. In our earlier paper, using the context of the Veselov
method for discrete mechanics, discrete analogues of Euler—Poincaré and Lie—Poisson re-
duction theory (see, e.g., [5]) were developed for systems on finite-dimensional Lie groups
G with Lagrangiand. : TG — R that areG-invariant. The resulting discrete equations
provide “reduced” numerical algorithms which manifestly preserve the symplectic struc-
ture. The manifoldG x G is used as the discrete approximationTd$, and a discrete
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LagrangianL : G x G — R is constructed from a given Lagrangi@nin such a way

that theG-invariance property is preserved. Reductiontbyesults in a new “variational”
principle for the reduced Lagrangi@n: G = (G x G)/G — R, which then determines

the discrete Euler—Poincaré (DEP) equations. Reconstruction of these equations is consis-
tent with the usual Veselov discrete Euler—-Lagrange (DEL) equations developed in Refs.
[6,13], which are naturally symplectic-momentum algorithms. Furthermore, the solution of
the DEP algorithm leads directly to a discrete Lie—Poisson (DLP) algorithm. For example,
whenG = so(n), the DEP and DLP algorithms for a particular choice of the discrete La-
grangianL are equivalent to the Moser—Veselov [9] scheme for the generalized rigid body.

Main results of this papeXe show that when a discrete LagranglanG x G — R is
G-invariant, a Poisson structure on (a subset) of one copy of the Lie graam be defined
which governs the corresponding discrete reduced dynamics. The symplectic leaves of this
structure become dynamically invariant manifolds which are manifestly preserved under
the structure preserving DEP algorithm (see Section 2.1).

Moreover, starting with a DEP system @hone can readily recover, by means of the
Legendre transformation, the corresponding Lie—Poisson Hamilton—Jacobi sysigim on
analyzed by Ge and Marsden [1]; the relationship between the DEL and DEP equations and
the Lie—Poisson Hamilton—Jacobi equations was examined from a different point of view
in our companion paper [7].

We also apply Weinstein’s results on Lagrangian mechanics on groupoids and algebroids
[12] to the setting of regular Lie groups. The groupoid—algebroid setting reveals new and
interesting connections between discrete and continuous dynamics.

2. Discrete reduction

In this section we review the DEP reduction of a Lagrangian syste@ii; considered
in detail in Ref. [7]. We approximat®G by G x G and form a discrete Lagrangidn :
G x G — R from the original Lagrangiai : TG — R by

L(gk, gk+1) = Lk (gk» gk+1)» X (8k» 8k+1)),

wherex and x are functions of(g, gx+1) Which approximate the current configuration
g(t) € G and the corresponding velocify(r) € T,G. We choose discretization schemes
for which the discrete Lagrangidninherits the symmetries of the original Lagrangian
L is G-invariant onG x G wheneverL is G-invariant onTG. In particular, the induced
right (left) lifted action of G onto TG corresponds to the diagonal right (left) action®f
onG x G.

Having specified the discrete Lagrangian, we formabton sum

N-1

S= ) L(g g+1),
k=0

which approximates the action integal= [ L dr, and obtain the DEL equations

DoL(gk—1, gk) + D1L(gk, gk+1) = O, (2.1)
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as well as the discrete symplectic fotsn, given in coordinates o6 x G by
3°L , ;
wp, = ng,’( A dg,i+l.
08198) 41
In Eqg. (2.1), O and D, denote derivatives with respect to the first and second argument,
respectively. The algorithm (2.1) as well ag, are obtained by extremizing the action
sumS : GN*t! — R with arbitrary variations. Using this variational point of view, it
is known that the flowF, of the DEL equations preserves this discrete symplectic struc-
ture. This result was obtained using a discrete Legendre transform and a direct computa-
tion in Refs. [10,11,13] and a proof using the variational structure directly was given in
Ref. [6].

Remark 2.1. We remark that the discrete symplectic structuyeis not globally defined,

but rather need only be nondegenerate in a neighborhood of the diagomalG x G,

i.e. wheneveg; and g;+1 are nearby. SectioB of Ref.[6] shows thatwy, arises from

the boundary terms of the discrete action sum restricted to the space of solutions of the
DEL equations; an implicit function theorem argument relying on the regularity of the
discrete Lagrangiarl is required in order to obtain solutions to the DEL equations, and
this regularity need only hold in a neighborhood of the diagofat G x G.

2.1. The DEP algorithm

The discrete reduction of aright-invariant system proceeds as follows (see [7] for details).
The case of left invariant systems is similar. Of course, some systems such as the rigid body
are left invariant.

The induced group action at x G by an elemeng € G is simply right multiplication
in each component

8 (&k» gk+1) = (gk&, 8k+18)

for all g¢, gx+1 € G.
The quotient map is given by

GxG

74:G x G — = G, (8k» 8k+1) = gkg,?jl. (2.2)

One may alternatively usgcﬂgk‘l instead ofg g, jl as the quotient map; the projection
map (2.2) defines theeduced discrete Lagrangiahi: G — R for any G-invariantlL. by
£ omg =L, sothat

0(gkgriy) = Ligk. kr).

and thereduced action suns given by

N-1

5= fikr):

k=0
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where fikr1 = gkgk‘jl denotes points in the quotient space. A reduction of the DEL
equations results in thdiscrete Euler—Poincaréquations

R%C(fiaey) — L% € (fiew) =0 (2.3)
fork=1,...,N — 1, WhereRf}t and L}i for f € G are the right and left pull-backs by
/', respectively, defined as follows: fa, € 7,°G, R}ozg € g* is given by(R;iag, &) =
(ag, TRrE) for any & e g, whereTRy is the tangent map of the right translation map
Ry : G — G, h — hf, with a similar definition forL’}. Also, ¢ : G — T*G is the
differential of ¢ defined as follows. Let€ be a smooth curve i such thatg® = g and
(d/d€)|e=0g€ = v. Then

/ d €
(v = & £(g%).
€ le=0

For the other choice of the quotient in (2.2) giveniy 1 = gk+1gk_l, the DEP equations
are

Ly ¥ (i1 — Ry € (hide1) = 0. (2.4)

Remark 2.2. In the case thal is left invariant, the DEP equations take the form
b U fierw) — Ry, € (fie) =0, (2.5)
where fi i = g5 118 IS in the left quotientG x G)/G.
Notice that Egs. (2.4) and (2.5) are formally the same.
We may associate to ary! function F defined on a neighborhoddof A ¢ G x G its
Hamiltonian vector fieldl r onV > A satisfyingX r_|wr, = dF, where &, the differential

of F, is a 1-form. The symplectic structusg, naturally defines a Poisson structure on a
neighborhood’ of A (which we shall denoté, -}¢« ) by the usual relation

{(F,H}¢xG = oL(XF, Xp).

Theorem 2.2 of [7] states that if the action@fon G x G is proper, the algorithm on
G defined by the DEP equations (2.3) preserves the induced Poisson stfuctiyeon
U C G given by

{f.h}g omg = {f omq, h o md}GxG (2.6)

for any C* functionsf, h onl{, whereld = q(V).
Using the definitionfxkr1 = gkgk_jl, the DEL algorithm can be reconstructed from the
DEP algorithm by

(8k—1. 8K) > (8k» k1) = (fi_148k-1. fir18K)- (2.7

where fik+1 is the solution of (2.3). Indeed”k;}rlgk is preciselygi 1. Similarly one shows
that in the case of a let action, the reconstruction of the DEP equation (2.5) is given by

(8k—1. 8K) = (8 8kr1) = (8k—1 i1 gkfk:rllk)-
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2.2. The DLP algorithm

In addition to reconstructing the dynamics 6nx G, one may use the coadjoint action
to form adiscrete Lie—Poissoalgorithm approximating the dynamics gh[7]

Mi+1 = AdY, Kk (2.8)

where u; = Ad* 71M0 is an element of the dual of the Lie algebrg is the constant
of motion (the momentum map value), and the sequéifgg 1} is provided by the DEP
algorithm onG.
The corresponding DLP equation for the left invariant system is given by
Miy1 =Ad*_; TIg, (2.9)

Terie

whereTll;, = Adzkﬂo andmg is the constant momentum map value. Henceforth, we shall
use the notatiop € g* for theright invariant system andll € g* for theleft.

3. Poisson structure and invariant manifolds on Lie groups

Discretization of an Euler—Poincaré systeml@hresults in a system ofi x G defined
by a Lagrangiati.. If it is regular, the Legendre transformation (in the sense of Veséltw)
define a symplectic form (and, hence, a Poisson structur®)@arG x G via the pull-back
of the canonical form fronT*G. Then, general Poisson reduction applied to these discrete
settings defines a Poisson structure on the reduced &paceay()V) C G. This approach
was adopted in Theorem 2.2 of Ref. [7].

Alternatively, without appealing to the reduction procedure, a Poisson structure on a
Lie group can be defined using ideas of Weinstein [12] on Lagrangian mechanics on
groupoids and their algebroids. The key idea can be summarized in the following state-
ments. A smooth function on a groupoid defines a natural (Legendre type) transformation
between the groupoid and the dual of its algebroid. This transformation can be used to
pull-back a canonical Poisson structure from the dual of the algebroid, provided the regu-
larity conditions are satisfied.

The ideas outlined in this section can be easily expressed using the groupoid—algebroid
formalism. Such a formalism is suited to the discrete gauge field theory generalization as
well as to discrete semidirect product theory; nevertheless, the theory of groupoids and
algebroids is not essential for the derivations, but rather contributes nicely to the elegance
of the exposition.

3.1. Dynamics on groupoids and algebroids

In this section, we show that our discrete reduction methodology is consistent with
Weinstein’s groupoid—algebroid construction; the contents of this section are not essen-
tial for the remainder of the paper.

We briefly summarize results from Weinstein [12] and refer the reader to the original
paper for details of proofs and definitions. Lléthe a groupoid over a séf, with «, 8 :
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' — M being its source and target maps, with a multiplication mapl'’, — I", where
2 ={(g.h) €T xT'|B(g) = a(h)}. Denote its corresponding algebroid Ay
The Lie groupoids relevant to our exposition are the Cartesian pragucic of a Lie
groupG, with multiplication(g, h)(k, k) = (g, k), and the groug itself. The correspond-
ing algebroids are the tangent bundif@and the Lie algebrg, respectively. The dual bundle
to a Lie algebroid carries a natural Poisson structure. This is the Poisson bracket associated
to the canonical symplectic form @G and the Lie—Poisson structure gy respectively.
Lagrangian mechanics on a groupdidis defined as follows. Le be a smooth,
real-valued function o, L2 the restriction tol'> of the function(g, h) — L(g) +
L(h).

Definition 3.1. Let ¥, c I'2 be the set of critical points of, along the fibers of the
multiplication mapn; i.e. the points irE ~ are stationary points of the functidiig) + L(h)
wheng andh are restricted to admissible pairs with the constraint that the prayhuist
fixed [12].

A solution of the Lagrange equatiorigr the Lagrangian functiorf is a sequence. .,
g-2,8-1, 80, &1, &2, ... Of elements ofl", defined on some “interval” itZ, such that
(gj, &j+1) € X for eachj.

The Hamiltonian formalism for discrete Lagrangian systems is based on the fact that each
Lagrangian submanifold of a symplectic groupoid determines a Poisson automorphism on
the base Poisson manifold. Recall that the cotangent buridles, in addition to being a
symplectic manifold, a groupoid itself, the base beitignotice that both manifolds are nat-
urally Poisson. The source and target mappings : 7*I" — A* are induced by andg.

Definition 3.2. Given any smooth functiod onT", a Poisson map » from A* to itself,
which may be said to be generated fys defined by the Lagrangian submanifold@")
(under a suitable hypothesis of nondegeneracy) [12].

The appropriate “Legendre transformatianZ in the groupoid context is given layo d.L :

I > A*orfodl : ' — A*, depending on whether we consider right or left invariance
(through the definition of mapsandg). The transformatiot¥ £ relates the mapping dn
defined byX » with the mappingA - on A*. F L also pulls back the Poisson structure from

A* to ', which, in general, is defined onlgcally on some neighborhodd c T'. In the
context of a Lie group, this means that any regular functiorG — R defines a Poisson
structure ori/. We shall address this issue in Sections 3.2 and 3.3. The reader is referred
to [12] for an application of the above ideas to the groupdick M when the manifoldy/

does not necessarily have group structure.

3.2. DEP equations as generators of Lie—Poisson Hamilton—Jacobi equations

A Lie groupG is the simplest example of a groupoid with the base being just a point. Its
algebroid is the corresponding Lie algepravith the dual being*. Consider leftinvariance
and let a general functiofi on the group be specified by the discrete reduced Lagrangian
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¢: G — R. Then, the Legendre transform defined above is given by
F@:L;odﬂiGﬁg*,

where d : G — T*G. Using these transformations we define

M1 = Fl(fier) = L, , o d(fis1)-

Recall the DEP equation (2.5) for left invariant systems

L%, 90 firw) — R, deCfik-1) =0,

where we have identified the notatiofisand . The latter equation can be rewritten as a
system

Me = L} o de(f),

3.1
M1 = R% 0 de(f), 3.1)

where the first equation is to be solved fgr(which stands forfi41x) which then is
substituted into the second equation to compuig1.

This system is precisely the Lie—Poisson Hamilton—Jacobi system described in Ref. [1]
with the reduced discrete Lagrangiémplaying the role of the generating function. This
means that there is no need to find an approximate solution of the reduced Hamilton—Jacobi
equation [1]. Notice also that the DLP equation (2.9) is a direct consequence of the system
(3.2)

1_Ik—i-l = Ad*-—l Iy
Jita

The following diagrams relate the dynamics Grand ong*:

b D

G =2 G fier = fierk

JFe JFe, Fe Fe, 3.2)
PR M1 =

whereX,; and A, are given in Definitions 3.1 and 3.2.
3.3. Some advantages of structure-preserving integrators

As we mentioned above, the “Legendre transfoimd allows us to put a Poisson structure
on the Lie groups, which, of course, depends on the discrete LagrangianG x G, and
hence on the original Lagrangidnon TG (if we consider this from the discrete reduction
point of view). It follows that the reduction of the discrete Euler—Lagrange dynamics on
G x G is necessarily restricted to the symplectic leaves of this Poisson structure, so that
these leaves are invariant manifolds, and correspond (unéleto the symplectic leaves
(coadjoint orbits) of the continuous reduced systengtn

These ideas are the content of Theorems 3.1 and 3.2.
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Theorem 3.1. Let L be a right-invariant Lagrangian on TG and [etbe the Lagrangian
of the corresponding discrete systemlort G x G. Assume thal is regular, in the sense
that the Legendre transformatiafil. ;: V — FILL(V) C T*G is a local diffeomorphism,
and let the quotient maps be given by

GxG _ .. T*G
=G, 7.:T"G — G

>~ g*

7g:GxG— g.

Let¢ be the reduced Lagrangian dai defined by
L =£omny,

and let
Ft:UcCG— g

be the corresponding Legendre transform. Then the following diagram commutes:

VeexG B o1

Jr I (3.3)

ucaG L g*

Proof. First, we choose coordinate systems on each spacéglet;+1) € G x G and
(g, p) € T*G, so that the discrete quotient map (2.2) is givenry: (gk, gk+1) —

Skl = gkgkjfl, and the continuous quotient map y. (g, p) — © = Rgp. Recall that
the fiber derivativeF'L in these coordinates has the following form (see, e.g., [13])

FL:GxG — T*G, (8k, 8k+1) > (gk. D1L(gk, gk+1))-

Then the above diagram (3.3) is given by

FL oL
(&> &+ —> &Pk = So
8k

Jrd I , (3.4)
f=Ry 18 n= Rg, pi

wheref stands forfik+1 = gkg,;ll. To close this diagram and to verify the arrow determined
by F¢ compute the derivative df using the chain rule

dtom)

M gkpk 8k agk

kY4 Y4

*k * — * — * /!

Ry, (ngfl_af> Rf_af Ry o U'(f), (3.5)

where we have used that, according to the definitioif ahe partial derivative f/dgy is

given by the linear operatd'ngill. Eq. (3.5) is precisely the Legendre transformatith
<+

for a right-invariant system (see Section 3.2). d

Corollary 3.1. Reconstruction of the DLP dynamicsgiby —! corresponds to the image
of the DEL dynamics o x G under the Legendre transformatiofd. and results in an
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algorithm onT*G approximating the continuous flow of the corresponding Hamiltonian
system

Proof. The proof follows from the results of Section 3.2, in particular, diagram (3.2) relates
the DLP dynamics og* with the DEP dynamics ot C G which, in turn, is related to the
DEL dynamics oV C G x G via the reconstruction (2.7). O

An important remark to Corollary 3.1 which follows from the results in Ref. [2] (see also
[3]) is that, in general, to get a corresponding algorithm on the Hamiltonian side which is
consistent with the corresponding continuous Hamiltonian systefi*6h one must use
the time stefk-dependent Legendre transform given by the map

(8k» &k+1) > (gk, —h D1lL(gk, gk+1)).

The results of this paper are not affected, however, as we agstonkee constant and so

we would simply add a constant multiplier to the corresponding symplectic and Poisson
structures. For variable time-stepping algorithms, this remark is crucial and must be taken
into account.

Theorem 3.2. The Poisson structure on the Lie group G obtained by reduction of the
Lagrange symplectic formag, onV C G x G via rrq coincides with the Poisson structure
onU C G obtained by the pull-back of the Lie—Poisson structugeon g* by the Legendre
transformationF'¢ (see diagran{3.3)).

Proof. The proof is based on the commutativity of diagram (3.3) andZtievariance of
the unreduced symplectic forms. Notice tiaandg* in (3.3) are Poisson manifolds, each
being foliated by symplectic leaves, which we denbteandO,, for f € G andu € g*,
respectively. Denote by andw, the corresponding symplectic forms on these leaves.
We shall prove the compatibility of these structures under the diagram (3.3). Repeating this
proof leaf-by-leaf establishes then the equivalence of the Poisson structures and proves the
theorem.

Recall that the Lagrange 2-for@t, onV C G x G derived from the variational principle
coincides with the pull-back of the canonical 2-fosganon 7*G (see, e.g., [6,13]). Recall
also that for a right-invariant system, reduction76fG to g* is given by right translation
to the identitye € G, i.e. anyp € T;G is mapped tu = Rgp € g* = I,)G. Thus, for
anyg € 7~ 1(u), whereu € g*,

ﬂillT*G = R:—l . g* — Tg*G,

so that(r ~1)* = (R;Ll)* pulls backwcanto w,. Henceforth;z ~1 shall denote the inverse
map ofr restricted tol;'G.
Let us write down using the above notations how the symplectic forms are being mapped
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under the transformations in diagram (3.3); we see that

VCGxG F—]I; T*G w1, QE* Wcan
Vg I, P hH*. (3.6)
Ucac L g* wy £e Wy

Then, using the coordinate notations of diagram (3.4) for AryG andu, v € Ty Xy,

or()u,v) = o, () (TFR(), TFE(V)), 3.7)
whereu = FL(f) € g*. Continuing Eq. (3.7) using diagram (3.6), we have

wr (), v) =wcan((gk, p) (T~ o TFe(u), Tt o TRE(v))
= o, ((gk, gk+0)) (TFL ™ o T7 ™1 o TFE(u), TFL L o
T~ 1o TFL(v)), (3.8)

where(gx, px) € 7~ 1(w) andTmw 1 denotesTR;,l.
Using (3.3), it follows that

Flong=moFL
and, hence, for the tangent maps, we have
TR o Tng=Tm o TFL.

So, ifu, v in (3.7) are images of som@-invariant vector fieldd/, V onV c G x G, i.e.
u=Trg(U),v = Trqg(V), then from (3.8) it follows that

wr(f)u,v) = oL((gk, g+1)(U, V),

where (gk, gk+1) = n;l(f) andU,V e T(g 4.)G x G. The last equation precisely
means that ¢ is the discretely reduced symplectic form, i.e. the imagefunder the
quotient mapry. O

Analogous theorems hold for the case of left invariant systems.

More general configuration spaceSimilar ideas carry over to the integration of systems
defined on a general configuration spa¢evith some symmetry grou@'. In this case, the
reduced discrete spa¢#/ x M)/G inherits a Poisson structure from the one defined on
M x M (analogously to (2.6)). Its symplectic leaves again become dynamically invariant
manifolds for structure-preserving integrators and can be viewed as images of the symplectic
leaves of the reduced Poisson manif@ldd /G under appropriately defined “Legendre
transformations”. This is a topic of ongoing research that builds on recent progress in
Lagrangian reduction theory (see [8]).

3.4. Poisson structures of the rigid body

As an example of applications of the above ideas, we consider the dynamics of the rigid
body and its associated reduction and discretization (see, e.g. [4,5,7,9] for more details).
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The basic set upThe configuration space of the system is(80OThe corresponding
Lagrangian is determined by a symmetric positive definite opetatoso(3) — s0(3),
defined byJ(§) = A& + £A, whereé € so(3) and A is a diagonal matrix satisfying
A;+A; > Oforalli # j. The leftinvariant metric on S@) is obtained by left translating
the bilinear form at € SO(3) which is given by

(&) = 1TrET1®)).

The operatot/, viewed as a mapping : so(3) — so(3)*, has the usual interpretation of
the inertia tensor, and the; correspond to the sums of certain principal moments of inertia.
The rigid body Lagrangian is the kinetic energy of the system

L(g, ) = (g7 8, T(g7t0) = 3£, T8) = 1(5), (3.9)

wheret = g~1¢ € s0(3) and(-, -) is the pairing between the Lie group and its dual.

Poisson structures and Casimir functiofiie Lie algebra dualo(3)* has a well-known
Lie—Poisson structure with a Casindig, ) (1) = Tr(u?), whereu € so(3)*. Upon iden-
tification with IR3, its generic symplectic leaves become concentric spheres with Kirillov—
Kostant symplectic form being proportional to the area form. tfenotes coordinates on
R3 = 50(3)*, then the Casimir function is given Ws0(3)<(y) = llyl12.

Following Section 5 of Ref. [7] on discrete Euler—Poincaré reduction, we obtain the
reduced form of the Moser—\Veselov Lagrangian on the gsadp) given by

(f) =Tr(fA),

where f € s0(3) andso(3) is embedded into the linear spagi€3). Then, the Legendre
transform#F ¢ takes the form

FU(f) = L% ode(f) = skew(fA) = fFA — AfT 2 50(3) — s0(3)",

where the constraint thagt be inso(3) has been enforced. The pull-back@, )« under
F¢* defines a Casimir functionn the group which up to a constant term and a sign, is
given by

Cso3)(f) =Tr(fAfA), [ €50(3). (3.10)

Its symplectic leaves constitute the invariant manifolds of the reduced discrete dynamics
corresponding to the Lagrangian (3.9).

Analogously, one can define a Poisson structure on the Lie algeljga using the
duality between Lie—Poisson and Euler—Poincaré reduced systemg )i andso(3),
respectively. The Lagrangian (3.9) defines the Legendre transform&tidrem so(3) to
s0(3)* given by = 91/ = J(&). Then, the pull-back bifl* defines a Casimir function
onso(3):

Cs03)(§) = FI*Cs03)+ () = (T (£), T (©))),

where the metric on the dual is induced by the one on the algebra, i.e. by the symmetric

~

positive definite operatoy. If x denotes coordinates dk® = so(3), then the Casimir
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function is given byCs,3) (x) = 1.7 (x)|I2. Thus, the corresponding symplectic leaves are
ellipsoids of 72. Theydo notcoincide with adjoint orbits, which are spheresRA. The
dynamic orbits are obtained by intersecting these ellipsoids, determing® byith the
energy ellipsoids, determined .
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