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Abstract

For a discrete mechanical system on a Lie groupG determined by a (reduced) Lagrangian`,
we define a Poisson structure via the pull-back of the Lie–Poisson structure on the dual of the Lie
algebrag∗ by the corresponding Legendre transform. The main result shown in this paper is that
this structure coincides with the reduction under the symmetry groupG of the canonical discrete
Lagrange 2-formωL onG×G. Its symplectic leaves then become dynamically invariant manifolds
for the reduced discrete system. Links between our approach and that of groupoids and algebroids as
well as the reduced Hamilton–Jacobi equation are made. The rigid body is discussed as an example.
© 2000 Published by Elsevier Science B.V.
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1. Introduction

Background.This paper continues our development of discrete Lagrangian mechanics
on a Lie group introduced in Ref. [7]. In our earlier paper, using the context of the Veselov
method for discrete mechanics, discrete analogues of Euler–Poincaré and Lie–Poisson re-
duction theory (see, e.g., [5]) were developed for systems on finite-dimensional Lie groups
G with LagrangiansL : TG→ R that areG-invariant. The resulting discrete equations
provide “reduced” numerical algorithms which manifestly preserve the symplectic struc-
ture. The manifoldG × G is used as the discrete approximation ofTG, and a discrete

∗ Corresponding author.
E-mail addresses: marsden@cds.caltech.edu (J.E. Marsden), sergey@cds.caltech.edu (S. Pekarsky),
shkoller@math.ucdavis.edu (S. Shkoller).

0393-0440/00/$ – see front matter © 2000 Published by Elsevier Science B.V.
PII: S0393-0440(00)00018-8



J.E. Marsden et al. / Journal of Geometry and Physics 36 (2000) 140–151 141

LagrangianL : G × G → R is constructed from a given LagrangianL in such a way
that theG-invariance property is preserved. Reduction byG results in a new “variational”
principle for the reduced Lagrangian` : G ∼= (G × G)/G → R, which then determines
the discrete Euler–Poincaré (DEP) equations. Reconstruction of these equations is consis-
tent with the usual Veselov discrete Euler–Lagrange (DEL) equations developed in Refs.
[6,13], which are naturally symplectic-momentum algorithms. Furthermore, the solution of
the DEP algorithm leads directly to a discrete Lie–Poisson (DLP) algorithm. For example,
whenG = so(n), the DEP and DLP algorithms for a particular choice of the discrete La-
grangianL are equivalent to the Moser–Veselov [9] scheme for the generalized rigid body.

Main results of this paper.We show that when a discrete LagrangianL : G×G→ R is
G-invariant, a Poisson structure on (a subset) of one copy of the Lie groupG can be defined
which governs the corresponding discrete reduced dynamics. The symplectic leaves of this
structure become dynamically invariant manifolds which are manifestly preserved under
the structure preserving DEP algorithm (see Section 2.1).

Moreover, starting with a DEP system onG one can readily recover, by means of the
Legendre transformation, the corresponding Lie–Poisson Hamilton–Jacobi system ong∗

analyzed by Ge and Marsden [1]; the relationship between the DEL and DEP equations and
the Lie–Poisson Hamilton–Jacobi equations was examined from a different point of view
in our companion paper [7].

We also apply Weinstein’s results on Lagrangian mechanics on groupoids and algebroids
[12] to the setting of regular Lie groups. The groupoid–algebroid setting reveals new and
interesting connections between discrete and continuous dynamics.

2. Discrete reduction

In this section we review the DEP reduction of a Lagrangian system onG×G considered
in detail in Ref. [7]. We approximateTG by G × G and form a discrete LagrangianL :
G×G→ R from the original LagrangianL : TG→ R by

L(gk, gk+1) = L(κ(gk, gk+1), χ(gk, gk+1)),

whereκ andχ are functions of(gk, gk+1) which approximate the current configuration
g(t) ∈ G and the corresponding velocitẏg(t) ∈ TgG. We choose discretization schemes
for which the discrete LagrangianL inherits the symmetries of the original LagrangianL:
L is G-invariant onG × G wheneverL is G-invariant onTG. In particular, the induced
right (left) lifted action ofG ontoTG corresponds to the diagonal right (left) action ofG

onG×G.
Having specified the discrete Lagrangian, we form theaction sum

S =
N−1∑
k=0

L(gk, gk+1),

which approximates the action integralS = ∫
L dt , and obtain the DEL equations

D2L(gk−1, gk)+ D1L(gk, gk+1) = 0, (2.1)
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as well as the discrete symplectic formωL, given in coordinates onG×G by

ωL =
∂2
L

∂gi
k∂g

j

k+1

dgi
k ∧ dg

j

k+1.

In Eq. (2.1), D1 and D2 denote derivatives with respect to the first and second argument,
respectively. The algorithm (2.1) as well asωL are obtained by extremizing the action
sumS : GN+1 → R with arbitrary variations. Using this variational point of view, it
is known that the flowFt of the DEL equations preserves this discrete symplectic struc-
ture. This result was obtained using a discrete Legendre transform and a direct computa-
tion in Refs. [10,11,13] and a proof using the variational structure directly was given in
Ref. [6].

Remark 2.1. We remark that the discrete symplectic structureωL is not globally defined,
but rather need only be nondegenerate in a neighborhood of the diagonal1 in G × G,
i.e. whenevergk and gk+1 are nearby. Section3 of Ref.[6] shows thatωL arises from
the boundary terms of the discrete action sum restricted to the space of solutions of the
DEL equations; an implicit function theorem argument relying on the regularity of the
discrete LagrangianL is required in order to obtain solutions to the DEL equations, and
this regularity need only hold in a neighborhood of the diagonal1 ⊂ G×G.

2.1. The DEP algorithm

The discrete reduction of a right-invariant system proceeds as follows (see [7] for details).
The case of left invariant systems is similar. Of course, some systems such as the rigid body
are left invariant.

The induced group action onG×G by an element̄g ∈ G is simply right multiplication
in each component

ḡ : (gk, gk+1) 7→ (gkḡ, gk+1ḡ)

for all gk, gk+1 ∈ G.

The quotient map is given by

πd : G×G→ G×G

G
∼= G, (gk, gk+1) 7→ gkg

−1
k+1. (2.2)

One may alternatively usegk+1g
−1
k instead ofgkg

−1
k+1 as the quotient map; the projection

map (2.2) defines thereduced discrete Lagrangiaǹ : G → R for anyG-invariantL by
` ◦ πd = L, so that

`(gkg
−1
k+1) = L(gk, gk+1),

and thereduced action sumis given by

s =
N−1∑
k=0

`(fkk+1),
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wherefkk+1 ≡ gkg
−1
k+1 denotes points in the quotient space. A reduction of the DEL

equations results in thediscrete Euler–Poincaréequations

R∗fkk+1
`′(fkk+1)− L∗fk−1k

`′(fk−1k) = 0 (2.3)

for k = 1, . . . , N − 1, whereR∗f andL∗f for f ∈ G are the right and left pull-backs by
f , respectively, defined as follows: forαg ∈ T ∗g G, R∗f αg ∈ g∗ is given by〈R∗f αg, ξ〉 =
〈αg, TRf ξ〉 for any ξ ∈ g, whereTRf is the tangent map of the right translation map
Rf : G → G; h → hf, with a similar definition forL∗f . Also, `′ : G → T ∗G is the

differential of` defined as follows. Letgε be a smooth curve inG such thatg0 = g and
(d/dε)|ε=0g

ε = v. Then

`′(g)v = d

dε

∣∣∣∣
ε=0

`(gε).

For the other choice of the quotient in (2.2) given byhk+1k ≡ gk+1g
−1
k , the DEP equations

are

L∗hk+1k
`′(hk+1k)− R∗hkk−1

`′(hkk−1) = 0. (2.4)

Remark 2.2. In the case thatL is left invariant, the DEP equations take the form

L∗fk+1k
`′(fk+1k)− R∗fkk−1

`′(fkk−1) = 0, (2.5)

wherefk+1k ≡ g−1
k+1gk is in the left quotient(G×G)/G.

Notice that Eqs. (2.4) and (2.5) are formally the same.
We may associate to anyC1 functionF defined on a neighborhoodV of 1 ⊂ G×G its

Hamiltonian vector fieldXF onV ⊃ 1 satisfyingXF |ωL = dF , where dF , the differential
of F , is a 1-form. The symplectic structureωL naturally defines a Poisson structure on a
neighborhoodV of 1 (which we shall denote{·, ·}G×G) by the usual relation

{F, H }G×G = ωL(XF , XH ).

Theorem 2.2 of [7] states that if the action ofG on G × G is proper, the algorithm on
G defined by the DEP equations (2.3) preserves the induced Poisson structure{·, ·}G on
U ⊂ G given by

{f, h}G ◦ πd = {f ◦ πd, h ◦ πd}G×G (2.6)

for anyC1 functionsf, h onU , whereU = πd(V).
Using the definitionfkk+1 = gkg

−1
k+1, the DEL algorithm can be reconstructed from the

DEP algorithm by

(gk−1, gk) 7→ (gk, gk+1) = (f−1
k−1kgk−1, f

−1
kk+1gk), (2.7)

wherefkk+1 is the solution of (2.3). Indeed,f−1
kk+1gk is preciselygk+1. Similarly one shows

that in the case of a leftG action, the reconstruction of the DEP equation (2.5) is given by

(gk−1, gk) 7→ (gk, gk+1) = (gk−1f
−1
kk−1, gkf

−1
k+1k).
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2.2. The DLP algorithm

In addition to reconstructing the dynamics onG×G, one may use the coadjoint action
to form adiscrete Lie–Poissonalgorithm approximating the dynamics ong∗ [7]

µk+1 = Ad∗fkk+1
µk, (2.8)

whereµk := Ad∗
g−1
k

µ0 is an element of the dual of the Lie algebra,µ0 is the constant

of motion (the momentum map value), and the sequence{fkk+1} is provided by the DEP
algorithm onG.

The corresponding DLP equation for the left invariant system is given by

5k+1 = Ad∗
f−1

k+1k

5k, (2.9)

where5k := Ad∗gk
π0 andπ0 is the constant momentum map value. Henceforth, we shall

use the notationµ ∈ g∗ for theright invariant system and5 ∈ g∗ for the left.

3. Poisson structure and invariant manifolds on Lie groups

Discretization of an Euler–Poincaré system onTG results in a system onG×G defined
by a LagrangianL. If it is regular, the Legendre transformation (in the sense of Veselov)FL

define a symplectic form (and, hence, a Poisson structure) onV ⊂ G×G via the pull-back
of the canonical form fromT ∗G. Then, general Poisson reduction applied to these discrete
settings defines a Poisson structure on the reduced spaceU = πd(V) ⊂ G. This approach
was adopted in Theorem 2.2 of Ref. [7].

Alternatively, without appealing to the reduction procedure, a Poisson structure on a
Lie group can be defined using ideas of Weinstein [12] on Lagrangian mechanics on
groupoids and their algebroids. The key idea can be summarized in the following state-
ments. A smooth function on a groupoid defines a natural (Legendre type) transformation
between the groupoid and the dual of its algebroid. This transformation can be used to
pull-back a canonical Poisson structure from the dual of the algebroid, provided the regu-
larity conditions are satisfied.

The ideas outlined in this section can be easily expressed using the groupoid–algebroid
formalism. Such a formalism is suited to the discrete gauge field theory generalization as
well as to discrete semidirect product theory; nevertheless, the theory of groupoids and
algebroids is not essential for the derivations, but rather contributes nicely to the elegance
of the exposition.

3.1. Dynamics on groupoids and algebroids

In this section, we show that our discrete reduction methodology is consistent with
Weinstein’s groupoid–algebroid construction; the contents of this section are not essen-
tial for the remainder of the paper.

We briefly summarize results from Weinstein [12] and refer the reader to the original
paper for details of proofs and definitions. Let0 be a groupoid over a setM, with α, β :
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0 → M being its source and target maps, with a multiplication mapm : 02 → 0, where
02 ≡ {(g, h) ∈ 0 × 0|β(g) = α(h)}. Denote its corresponding algebroid byA.

The Lie groupoids relevant to our exposition are the Cartesian productG × G of a Lie
groupG, with multiplication(g, h)(h, k) = (g, k), and the groupG itself. The correspond-
ing algebroids are the tangent bundleTGand the Lie algebrag, respectively. The dual bundle
to a Lie algebroid carries a natural Poisson structure. This is the Poisson bracket associated
to the canonical symplectic form onT ∗G and the Lie–Poisson structure ong∗, respectively.

Lagrangian mechanics on a groupoid0 is defined as follows. LetL be a smooth,
real-valued function on0, L2 the restriction to02 of the function(g, h) 7→ L(g) +
L(h).

Definition 3.1. Let 6L ⊂ 02 be the set of critical points ofL2 along the fibers of the
multiplication mapm; i.e. the points in6L are stationary points of the functionL(g)+L(h)

wheng andh are restricted to admissible pairs with the constraint that the productgh is
fixed [12].

A solution of the Lagrange equationsfor the Lagrangian functionL is a sequence. . . ,
g−2, g−1, g0, g1, g2, . . . of elements of0, defined on some “interval” inZ, such that
(gj , gj+1) ∈ 6L for eachj .

The Hamiltonian formalism for discrete Lagrangian systems is based on the fact that each
Lagrangian submanifold of a symplectic groupoid determines a Poisson automorphism on
the base Poisson manifold. Recall that the cotangent bundleT ∗0 is, in addition to being a
symplectic manifold, a groupoid itself, the base beingA∗; notice that both manifolds are nat-
urally Poisson. The source and target mappingsα̃, β̃ : T ∗0→ A∗ are induced byα andβ.

Definition 3.2. Given any smooth functionL on 0, a Poisson map3L fromA∗ to itself,
which may be said to be generated byL is defined by the Lagrangian submanifold dL(0)

(under a suitable hypothesis of nondegeneracy) [12].

The appropriate “Legendre transformation”FL in the groupoid context is given bỹα ◦dL :
0 → A∗ or β̃ ◦ dL : 0 → A∗, depending on whether we consider right or left invariance
(through the definition of maps̃α andβ̃). The transformationFL relates the mapping on0
defined by6L with the mapping3L onA∗. FL also pulls back the Poisson structure from
A∗ to 0, which, in general, is defined onlylocally on some neighborhoodU ⊂ 0. In the
context of a Lie group, this means that any regular function` : G→ R defines a Poisson
structure onU . We shall address this issue in Sections 3.2 and 3.3. The reader is referred
to [12] for an application of the above ideas to the groupoidM ×M when the manifoldM
does not necessarily have group structure.

3.2. DEP equations as generators of Lie–Poisson Hamilton–Jacobi equations

A Lie groupG is the simplest example of a groupoid with the base being just a point. Its
algebroid is the corresponding Lie algebrag, with the dual beingg∗. Consider left invariance
and let a general functionL on the group be specified by the discrete reduced Lagrangian
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` : G→ R. Then, the Legendre transform defined above is given by

F` = L∗g ◦ d` : G→ g∗,

where d̀ : G→ T ∗G. Using these transformations we define

5k−1 ≡ F`(fkk−1) = L∗fkk−1
◦ d`(fkk−1).

Recall the DEP equation (2.5) for left invariant systems

L∗fk+1k
d`(fk+1k)− R∗fkk−1

d`(fkk−1) = 0,

where we have identified the notations`′ and d̀ . The latter equation can be rewritten as a
system

5k = L∗f ◦ d`(f ),

5k+1 = R∗f ◦ d`(f ),
(3.1)

where the first equation is to be solved forf (which stands forfk+1k) which then is
substituted into the second equation to compute5k+1.

This system is precisely the Lie–Poisson Hamilton–Jacobi system described in Ref. [1]
with the reduced discrete Lagrangian` playing the role of the generating function. This
means that there is no need to find an approximate solution of the reduced Hamilton–Jacobi
equation [1]. Notice also that the DLP equation (2.9) is a direct consequence of the system
(3.1)

5k+1 = Ad∗
f−1

k+1k

5k.

The following diagrams relate the dynamics onG and ong∗:

G
6`→ G

↓F` ↓F` ,

g∗ 3`→ g∗

fkk−1
6`→ fk+1k

↓F` ↓F` ,

5k−1
3`→ 5k

(3.2)

where6` and3` are given in Definitions 3.1 and 3.2.

3.3. Some advantages of structure-preserving integrators

As we mentioned above, the “Legendre transform”F` allows us to put a Poisson structure
on the Lie groupG, which, of course, depends on the discrete LagrangianL onG×G, and
hence on the original LagrangianL on TG (if we consider this from the discrete reduction
point of view). It follows that the reduction of the discrete Euler–Lagrange dynamics on
G × G is necessarily restricted to the symplectic leaves of this Poisson structure, so that
these leaves are invariant manifolds, and correspond (underF`) to the symplectic leaves
(coadjoint orbits) of the continuous reduced system ong∗.

These ideas are the content of Theorems 3.1 and 3.2.
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Theorem 3.1. Let L be a right-invariant Lagrangian on TG and letL be the Lagrangian
of the corresponding discrete system onV ⊂ G×G. Assume thatL is regular, in the sense
that the Legendre transformationFL : V → FL(V) ⊂ T ∗G is a local diffeomorphism,
and let the quotient maps be given by

πd : G×G→ G×G

G
∼= G, π : T ∗G→ T ∗G

G
∼= g∗.

Let` be the reduced Lagrangian onG defined by

L = ` ◦ πd,

and let

F` : U ⊂ G→ g∗

be the corresponding Legendre transform. Then the following diagram commutes:

V ⊂ G×G
FL→ T ∗G

↓πd ↓π
U ⊂ G

F`→ g∗
. (3.3)

Proof. First, we choose coordinate systems on each space. Let(gk, gk+1) ∈ G × G and
(g, p) ∈ T ∗G, so that the discrete quotient map (2.2) is given byπd : (gk, gk+1) 7→
fkk+1 = gkg

−1
k+1, and the continuous quotient map byπ : (g, p) 7→ µ = R∗gp. Recall that

the fiber derivativeFL in these coordinates has the following form (see, e.g., [13])

FL : G×G→ T ∗G, (gk, gk+1) 7→ (gk, D1L(gk, gk+1)).

Then the above diagram (3.3) is given by

(gk, gk+1)
FL→

(
gk, pk = ∂L

∂gk

)

↓πd ↓π
f = R

g−1
k+1

gk µ = R∗gk
pk

, (3.4)

wheref stands forfkk+1 = gkg
−1
k+1. To close this diagram and to verify the arrow determined

by F` compute the derivative ofL using the chain rule

µ = R∗gk
pk = R∗gk

∂(` ◦ π)

∂gk

= R∗gk

(
R∗

g−1
k+1

∂`

∂f

)
= R∗f

∂`

∂f
= R∗f ◦ `′(f ), (3.5)

where we have used that, according to the definition off , the partial derivative∂f/∂gk is
given by the linear operatorTR

g−1
k+1

. Eq. (3.5) is precisely the Legendre transformationF`

for a right-invariant system (see Section 3.2). �

Corollary 3.1. Reconstruction of the DLP dynamics ong∗ byπ−1 corresponds to the image
of the DEL dynamics onG×G under the Legendre transformationsFL and results in an
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algorithm onT ∗G approximating the continuous flow of the corresponding Hamiltonian
system.

Proof. The proof follows from the results of Section 3.2, in particular, diagram (3.2) relates
the DLP dynamics ong∗ with the DEP dynamics onU ⊂ G which, in turn, is related to the
DEL dynamics onV ⊂ G×G via the reconstruction (2.7). �

An important remark to Corollary 3.1 which follows from the results in Ref. [2] (see also
[3]) is that, in general, to get a corresponding algorithm on the Hamiltonian side which is
consistent with the corresponding continuous Hamiltonian system onT ∗G, one must use
the time steph-dependent Legendre transform given by the map

(gk, gk+1) 7→ (gk,−h D1L(gk, gk+1)).

The results of this paper are not affected, however, as we assumeh to be constant and so
we would simply add a constant multiplier to the corresponding symplectic and Poisson
structures. For variable time-stepping algorithms, this remark is crucial and must be taken
into account.

Theorem 3.2. The Poisson structure on the Lie group G obtained by reduction of the
Lagrange symplectic formωL onV ⊂ G×G via πd coincides with the Poisson structure
onU ⊂ G obtained by the pull-back of the Lie–Poisson structureωµ ong∗ by the Legendre
transformationF` (see diagram(3.3)).

Proof. The proof is based on the commutativity of diagram (3.3) and theG invariance of
the unreduced symplectic forms. Notice thatG andg∗ in (3.3) are Poisson manifolds, each
being foliated by symplectic leaves, which we denote6f andOµ for f ∈ G andµ ∈ g∗,
respectively. Denote byωf andωµ the corresponding symplectic forms on these leaves.
We shall prove the compatibility of these structures under the diagram (3.3). Repeating this
proof leaf-by-leaf establishes then the equivalence of the Poisson structures and proves the
theorem.

Recall that the Lagrange 2-formωL onV ⊂ G×G derived from the variational principle
coincides with the pull-back of the canonical 2-formωcanonT ∗G (see, e.g., [6,13]). Recall
also that for a right-invariant system, reduction ofT ∗G to g∗ is given by right translation
to the identitye ∈ G, i.e. anyp ∈ T ∗g G is mapped toµ = R∗gp ∈ g∗ ∼= T ∗e G. Thus, for

anyg ∈ π−1(µ), whereµ ∈ g∗,

π−1|T ∗G = R∗
g−1 : g∗ → T ∗g G,

so that(π−1)∗ = (R∗
g−1)
∗ pulls backωcan to ωµ. Henceforth,π−1 shall denote the inverse

map ofπ restricted toT ∗g G.
Let us write down using the above notations how the symplectic forms are being mapped
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under the transformations in diagram (3.3); we see that

V ⊂ G×G
FL→ T ∗G

↓πd ↓π,

U ⊂ G
F`→ g∗

ωL
FL∗← ωcan

↑(π−1)∗ .

ωf
F`∗← ωµ

(3.6)

Then, using the coordinate notations of diagram (3.4) for anyf ∈ G andu, v ∈ Tf 6f ,

ωf (f )(u, v) ≡ ωµ(µ)(TF`(u), TF`(v)), (3.7)

whereµ = F`(f ) ∈ g∗. Continuing Eq. (3.7) using diagram (3.6), we have

ωf (f )(u, v)= ωcan((gk, pk))(T π−1 ◦ TF`(u), T π−1 ◦ TF`(v))

= ωL((gk, gk+1))(TFL−1 ◦ T π−1 ◦ TF`(u), TFL−1 ◦
T π−1 ◦ TF`(v)), (3.8)

where(gk, pk) ∈ π−1(µ) andT π−1 denotesTR∗
g−1.

Using (3.3), it follows that

F` ◦ πd = π ◦ FL

and, hence, for the tangent maps, we have

TF` ◦ T πd = T π ◦ TFL.

So, if u, v in (3.7) are images of someG-invariant vector fieldsU, V onV ⊂ G ×G, i.e.
u = T πd(U), v = T πd(V ), then from (3.8) it follows that

ωf (f )(u, v) = ωL((gk, gk+1))(U, V ),

where(gk, gk+1) = π−1
d (f ) andU, V ∈ T(gk,gk+1)G × G. The last equation precisely

means thatωf is the discretely reduced symplectic form, i.e. the image ofωL under the
quotient mapπd. �

Analogous theorems hold for the case of left invariant systems.
More general configuration spaces.Similar ideas carry over to the integration of systems

defined on a general configuration spaceM with some symmetry groupG. In this case, the
reduced discrete space(M ×M)/G inherits a Poisson structure from the one defined on
M ×M (analogously to (2.6)). Its symplectic leaves again become dynamically invariant
manifolds for structure-preserving integrators and can be viewed as images of the symplectic
leaves of the reduced Poisson manifoldT ∗M/G under appropriately defined “Legendre
transformations”. This is a topic of ongoing research that builds on recent progress in
Lagrangian reduction theory (see [8]).

3.4. Poisson structures of the rigid body

As an example of applications of the above ideas, we consider the dynamics of the rigid
body and its associated reduction and discretization (see, e.g. [4,5,7,9] for more details).
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The basic set up.The configuration space of the system is SO(3). The corresponding
Lagrangian is determined by a symmetric positive definite operatorJ : so(3) → so(3),
defined byJ (ξ) = 3ξ + ξ3, whereξ ∈ so(3) and3 is a diagonal matrix satisfying
3i +3j > 0 for all i 6= j . The left invariant metric on SO(3) is obtained by left translating
the bilinear form ate ∈ SO(3) which is given by

(ξ, ξ) = 1
4Tr(ξTJ (ξ)).

The operatorJ , viewed as a mappingJ : so(3)→ so(3)∗, has the usual interpretation of
the inertia tensor, and the3i correspond to the sums of certain principal moments of inertia.

The rigid body Lagrangian is the kinetic energy of the system

L(g, ġ) = 1
4〈g−1ġ,J (g−1ġ)〉 = 1

4〈ξ,J ξ〉 = l(ξ), (3.9)

whereξ = g−1ġ ∈ so(3) and〈·, ·〉 is the pairing between the Lie group and its dual.
Poisson structures and Casimir functions.The Lie algebra dualso(3)∗ has a well-known

Lie–Poisson structure with a CasimirCso(3)∗(µ) = Tr(µ2), whereµ ∈ so(3)∗. Upon iden-
tification withR3, its generic symplectic leaves become concentric spheres with Kirillov–
Kostant symplectic form being proportional to the area form. Ify denotes coordinates on
R

3 ∼= so(3)∗, then the Casimir function is given byCso(3)∗(y) = ‖y‖2.
Following Section 5 of Ref. [7] on discrete Euler–Poincaré reduction, we obtain the

reduced form of the Moser–Veselov Lagrangian on the groupso(3) given by

`(f ) = Tr(f 3),

wheref ∈ so(3) andso(3) is embedded into the linear spacegl(3). Then, the Legendre
transformF` takes the form

F`(f ) = L∗f ◦ d`(f ) = skew(f 3) = f 3−3f T : so(3)→ so(3)∗,

where the constraint thatf be inso(3) has been enforced. The pull-back ofCso(3)∗ under
F`∗ defines a Casimir functionon the group, which up to a constant term and a sign, is
given by

Cso(3)(f ) = Tr(f 3f 3), f ∈ so(3). (3.10)

Its symplectic leaves constitute the invariant manifolds of the reduced discrete dynamics
corresponding to the Lagrangian (3.9).

Analogously, one can define a Poisson structure on the Lie algebraso(3) using the
duality between Lie–Poisson and Euler–Poincaré reduced systems onso(3)∗ andso(3),
respectively. The Lagrangian (3.9) defines the Legendre transformationsFl from so(3) to
so(3)∗ given byµ = ∂l/∂ξ = J (ξ). Then, the pull-back byFl∗ defines a Casimir function
on so(3):

Cso(3)(ξ) = Fl∗Cso(3)∗(ξ) = 〈〈J (ξ),J (ξ)〉〉,
where the metric on the dual is induced by the one on the algebra, i.e. by the symmetric
positive definite operatorJ . If x denotes coordinates onR3 ∼= so(3), then the Casimir
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function is given byCso(3)(x) = ‖J (x)‖2. Thus, the corresponding symplectic leaves are
ellipsoids ofJ 2. Theydo notcoincide with adjoint orbits, which are spheres inR3. The
dynamic orbits are obtained by intersecting these ellipsoids, determined byJ 2, with the
energy ellipsoids, determined byJ .
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